metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraguanidinium bis[citrato(3-)]cuprate(II) dihydrate

Mohammad T. M. Al-Dajani,^a Hassan H. Abdallah,^b Nornisah Mohamed,^a* Chin Sing Yeap^c‡ and Hoong-Kun Fun^c*§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: nornisah@usm.my, hkfun@usm.my

Received 27 October 2009; accepted 3 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.031; *wR* factor = 0.094; data-to-parameter ratio = 34.2.

The asymmetric unit of the title compound, $(CH_6N_3)_4[Cu-(C_6H_5O_7)_2]\cdot 2H_2O$, contains one-half of a centrosymmetric Cu^{II} complex anion, two guanidinium cations and a water molecule. The Cu^{II} ion, lying on a crystallographic inversion center, is hexacoordinated with two citrate anions in a distorted octahedral geometry. An intramolecular $O-H\cdots O$ hydrogen bond generates an S(6) ring motif. In the crystal structure, molecules are linked into a three-dimensional framework by intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds.

Related literature

For general background to citric acid and guanidine, see: Raczyńska *et al.* (2003); Yamada *et al.* (2009); Sigman *et al.* (1993). For a related structure with a guanidinium cation, see: Al-Dajani *et al.* (2009). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

‡ Thomson Reuters ResearcherID: A-5523-2009. § Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.653, T_{max} = 0.787$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	206 parameters
$vR(F^2) = 0.094$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
7051 reflections	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

37237 measured reflections

 $R_{\rm int} = 0.024$

7051 independent reflections

6306 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu1-O2	1.9169 (7)	Cu1-O3	2.2016 (7)
Cu1-O1	2.0857 (8)		. ,

Table 2

Hydrogen-bond geometry (Å, °).

D II 4	D II	TT 4	D 4	
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H1 <i>O</i> 3···O6	0.95	1.61	2.5034 (13)	154
$N1 - H1N1 \cdots O5^{i}$	0.86	2.44	3.169 (2)	143
$N1 - H2N1 \cdots O2^{ii}$	0.86	2.47	3.0810 (19)	129
$N1 - H2N1 \cdots O1^{iii}$	0.86	2.50	3.3243 (18)	161
$N2-H1N2\cdots O7^{iv}$	0.86	2.06	2.906 (2)	169
$N2-H2N2\cdots O4^{iii}$	0.86	2.07	2.8811 (14)	157
$N3-H1N3\cdots O6^{iv}$	0.86	2.02	2.860 (2)	167
$N3-H2N3\cdots O5^{i}$	0.86	2.12	2.937 (2)	157
$N4 - H1N4 \cdots O1W^{v}$	0.86	2.10	2.916 (2)	157
$N4-H2N4\cdots O6^{vi}$	0.86	2.56	3.0760 (18)	119
$N4 - H2N4 \cdot \cdot \cdot O7^{i}$	0.86	2.26	2.9973 (17)	144
$N5-H1N5\cdots O2^{ii}$	0.86	2.06	2.8484 (15)	152
$N5-H2N5\cdots O7^{i}$	0.86	2.03	2.8273 (17)	153
$N6-H1N6\cdots O3^{iii}$	0.86	2.18	3.0140 (14)	164
$N6-H2N6\cdots O4$	0.86	1.99	2.8387 (18)	170
$O1W-H1W1\cdots O4^{v}$	0.78	2.52	3.032 (2)	124
$O1W - H2W1 \cdots O1^{ii}$	0.90	2.03	2.932 (2)	175

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z; (v) -x + 2, -y + 1, -z + 1; (vi) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF thanks USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/ 811012). CSY thanks USM for the award of a USM Fellow-ship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2960).

References

Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, 02508–02509.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Raczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). *J. Phys. Org. Chem.* 16, 91–106. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Sigman, D. S., Mazumder, A. & Perrin, D. M. (1993). Chem. Rev. 93, 2295– 2316.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651–5655.

Acta Cryst. (2009). E65, m1540-m1541 [doi:10.1107/S1600536809046170]

Tetraguanidinium bis[citrato(3-)]cuprate(II) dihydrate

M. T. M. Al-Dajani, H. H. Abdallah, N. Mohamed, C. S. Yeap and H.-K. Fun

Comment

Citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid contains three carboxyl groups. It is an intermediate in the citric acid cycle in living organisms. It can be added to the food and soft drinks to add a sour or an acidic taste. Guanidine can be formed by the oxidation of guanine as a final product of the protein metabolism. The copper(II) ion in this crystal is coordinated to two citrate ions by the oxygen atoms and the four guanidinium ions neutralize the complex charge (Raczyńska *et al.*, 2003; Yamada *et al.*, 2009; Sigman *et al.*, 1993).

The asymmetric unit of title compound contains half of a Cu^{II} complex anion, two guanidinium cations and a water solvent molecule, the other half is symmetry generated [symmetry code: -x + 1, -y + 2, -z + 1] (Fig. 1). The Cu^{II} ion lies on a crystallographic inversion center and is coordinated to six O atoms from two citrate anions to form an octahedral geometry. Four protons are deprotonated from two citric acid molecules to four guanidine molecules resulting in the formation of ions. The geometrical parameters of guanidinium cations agree with those previously reported (Al-Dajani *et al.*, 2009). An intramolecular O3—H1O3···O6 hydrogen bond generates an *S*(6) ring motif (Bernstein *et al.*, 1995).

In crystal structure (Fig. 2), all guanidinium N–H groups participate in the formation of a three-dimensional framework through N—H···O hydrogen bonds (Table 2). The structure are also stabilized by intermolecular O1W—H1W1···O4 and O1W—H2W1···O1 hydrogen bonds.

Experimental

Citric acid (anhydrous) (0.02 mol, 3.85 g) was dissolved in THF in a flat bottom flask with magnetic stirrer. In a separating funnel, guanidine carbonate (0.02 mol, 3.6 g), 99% [H₂NC(NH)NH₂].2H₂CO₃ was dissolved in THF. The guanidine solution was added in small portions to the flask of citric acid with stirring. The reaction mixture was refluxed for 1 h. After cooling the reaction mixture to room temperature, CuCl₂ (0.01 mol, 1.45 g) was added with stirring for 3 h. Blue crystals formed were washed with *N*,*N*-dimethylformamide followed by methanol and dried at 353 K.

Refinement

O-bound H atoms were located in a difference Fourier map and refined as riding on their parent atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. The remaining H atoms were positioned geometrically [C–H = 0.97 Å and N–H = 0.86 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. Molecules/atoms with suffix A are generated by the symmetry operation (1-x, 2-y, 1-z). Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2. The crystal packing of title compound, viewed down the *a* axis, showing hydrogenbonded (dashed lines) three-dimensional framework.

Tetraguanidinium bis[citrato(3-)]cuprate(II) dihydrate

Crystal data

Z = 1
$F_{000} = 375$
$D_{\rm x} = 1.508 {\rm ~Mg~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 9680 reflections
$\theta = 2.3 - 34.9^{\circ}$
$\mu = 0.78 \text{ mm}^{-1}$
T = 296 K
Block, blue
$0.60 \times 0.39 \times 0.32 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	7051 independent reflections
Radiation source: fine-focus sealed tube	6306 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 296 K	$\theta_{\text{max}} = 35.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -14 \rightarrow 14$
$T_{\min} = 0.653, T_{\max} = 0.787$	$k = -15 \rightarrow 15$
37237 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.031$ H-atom parameters constrained $wR(F^2) = 0.094$ $w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 0.108P]$ $wR(F^2) = 0.094$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{max} < 0.001$ 7051 reflections $\Delta\rho_{max} = 0.44 \text{ e } \text{Å}^{-3}$ 206 parameters $\Delta\rho_{min} = -0.49 \text{ e } \text{Å}^{-3}$ Primary atom site location: structure-invariant direct $\Gamma_{velocitien}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic o	or	equivalent	isotropic	displ	lacement	parameters	(Å ²	²)
				rear and a second secon		1	······································	···· r ·		r · · · · · · · · ·	1	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.5000	1.0000	0.5000	0.02544 (5)
01	0.66219 (12)	0.89568 (10)	0.55711 (9)	0.04046 (18)
O2	0.55673 (11)	1.02356 (8)	0.33541 (8)	0.03511 (15)
03	0.32813 (9)	0.77094 (8)	0.36675 (7)	0.02790 (12)
H1O3	0.2276	0.7661	0.3035	0.042*
O4	0.76260 (15)	0.72314 (13)	0.55564 (10)	0.0536 (3)
O5	0.57936 (15)	0.90234 (12)	0.15326 (10)	0.0506 (2)
07	0.09687 (12)	0.65390 (12)	-0.05629 (9)	0.04401 (19)
O6	0.10222 (13)	0.74648 (13)	0.15156 (9)	0.0480 (2)
C1	0.66253 (14)	0.77440 (12)	0.49850 (10)	0.03244 (18)
C2	0.53925 (14)	0.68374 (11)	0.35373 (10)	0.03180 (18)
H2A	0.4699	0.5826	0.3601	0.038*
H2B	0.6052	0.6721	0.2966	0.038*
C3	0.42059 (12)	0.74833 (10)	0.27880 (9)	0.02586 (14)
C4	0.52711 (13)	0.90199 (11)	0.25150 (10)	0.02936 (16)
C5	0.29501 (13)	0.63732 (12)	0.14090 (10)	0.03315 (18)
H5A	0.3568	0.6313	0.0784	0.040*
H5B	0.2432	0.5367	0.1567	0.040*
C6	0.15557 (13)	0.68329 (13)	0.07232 (11)	0.03335 (18)
N1	0.33925 (19)	0.13097 (19)	0.12541 (16)	0.0627 (4)
H1N1	0.3944	0.1103	0.0759	0.075*
H2N1	0.3625	0.1237	0.2099	0.075*
N2	0.13528 (17)	0.20918 (16)	0.14703 (11)	0.0503 (3)
H1N2	0.0587	0.2390	0.1118	0.060*

H2N2	0.1577	0.2022	0.2316	0.060*
N3	0.18333 (18)	0.18500 (18)	-0.05808 (13)	0.0548 (3)
H1N3	0.1067	0.2149	-0.0929	0.066*
H2N3	0.2372	0.1622	-0.1078	0.066*
C7	0.21821 (16)	0.17412 (15)	0.07130 (13)	0.0409 (2)
N4	0.86185 (16)	0.53693 (13)	0.28012 (13)	0.0475 (2)
H1N4	0.8743	0.6260	0.3163	0.057*
H2N4	0.8867	0.5223	0.2066	0.057*
N5	0.78586 (17)	0.28597 (12)	0.28065 (14)	0.0506 (3)
H1N5	0.7486	0.2106	0.3171	0.061*
H2N5	0.8111	0.2727	0.2071	0.061*
N6	0.76591 (17)	0.44356 (13)	0.45058 (12)	0.0469 (2)
H1N6	0.7286	0.3687	0.4875	0.056*
H2N6	0.7782	0.5324	0.4872	0.056*
C8	0.80435 (14)	0.42221 (12)	0.33777 (12)	0.03575 (19)
O1W	0.9973 (2)	0.13741 (17)	0.59833 (19)	0.0955 (6)
H1W1	0.9976	0.1225	0.5223	0.143*
H2W1	0.8945	0.0656	0.5902	0.143*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03201 (8)	0.02210 (7)	0.02568 (7)	0.01325 (6)	0.01258 (6)	0.00553 (5)
01	0.0452 (4)	0.0371 (4)	0.0360 (4)	0.0230 (3)	0.0056 (3)	-0.0025 (3)
02	0.0494 (4)	0.0258 (3)	0.0361 (3)	0.0148 (3)	0.0244 (3)	0.0102 (3)
03	0.0326 (3)	0.0312 (3)	0.0270 (3)	0.0169 (3)	0.0150 (2)	0.0095 (2)
O4	0.0671 (6)	0.0638 (6)	0.0356 (4)	0.0484 (5)	0.0001 (4)	0.0013 (4)
05	0.0680 (6)	0.0506 (5)	0.0475 (5)	0.0245 (5)	0.0415 (5)	0.0142 (4)
07	0.0438 (4)	0.0615 (5)	0.0297 (3)	0.0260 (4)	0.0114 (3)	0.0117 (3)
06	0.0495 (5)	0.0745 (6)	0.0368 (4)	0.0434 (5)	0.0156 (4)	0.0118 (4)
C1	0.0374 (5)	0.0347 (4)	0.0283 (4)	0.0200 (4)	0.0097 (3)	0.0055 (3)
C2	0.0381 (5)	0.0299 (4)	0.0298 (4)	0.0209 (4)	0.0075 (3)	0.0030 (3)
C3	0.0307 (4)	0.0259 (3)	0.0257 (3)	0.0156 (3)	0.0118 (3)	0.0055 (3)
C4	0.0349 (4)	0.0310 (4)	0.0297 (4)	0.0173 (3)	0.0166 (3)	0.0097 (3)
C5	0.0345 (4)	0.0344 (4)	0.0302 (4)	0.0184 (4)	0.0081 (3)	0.0007 (3)
C6	0.0317 (4)	0.0402 (5)	0.0306 (4)	0.0168 (4)	0.0118 (3)	0.0095 (4)
N1	0.0661 (8)	0.0851 (10)	0.0603 (7)	0.0545 (8)	0.0185 (6)	0.0314 (7)
N2	0.0583 (7)	0.0732 (8)	0.0362 (5)	0.0412 (6)	0.0187 (5)	0.0210 (5)
N3	0.0626 (7)	0.0884 (9)	0.0431 (5)	0.0535 (7)	0.0265 (5)	0.0286 (6)
C7	0.0425 (6)	0.0463 (6)	0.0403 (5)	0.0248 (5)	0.0127 (4)	0.0160 (4)
N4	0.0615 (7)	0.0363 (5)	0.0504 (6)	0.0167 (5)	0.0300 (5)	0.0196 (4)
N5	0.0674 (7)	0.0337 (4)	0.0606 (7)	0.0170 (5)	0.0423 (6)	0.0136 (4)
N6	0.0701 (7)	0.0422 (5)	0.0486 (6)	0.0307 (5)	0.0365 (5)	0.0214 (4)
C8	0.0382 (5)	0.0329 (4)	0.0413 (5)	0.0146 (4)	0.0197 (4)	0.0144 (4)
O1W	0.0812 (9)	0.0655 (8)	0.1106 (12)	-0.0041 (7)	0.0578 (9)	-0.0212 (8)

Geometric parameters (Å, °)

Cu1—O2 ⁱ	1.9169 (7)	С5—Н5В	0.97
Cu1—O2	1.9169 (7)	N1—C7	1.3292 (16)
Cu1—O1	2.0857 (8)	N1—H1N1	0.86
Cu1—O1 ⁱ	2.0857 (8)	N1—H2N1	0.86
Cu1—O3 ⁱ	2.2015 (7)	N2—C7	1.3189 (17)
Cu1—O3	2.2016 (7)	N2—H1N2	0.86
O1—C1	1.2704 (12)	N2—H2N2	0.86
O2—C4	1.2798 (12)	N3—C7	1.3162 (16)
O3—C3	1.4401 (11)	N3—H1N3	0.86
O3—H1O3	0.95	N3—H2N3	0.86
O4—C1	1.2432 (13)	N4—C8	1.3255 (14)
O5—C4	1.2286 (12)	N4—H1N4	0.86
O7—C6	1.2464 (13)	N4—H2N4	0.86
O6—C6	1.2678 (13)	N5—C8	1.3232 (15)
C1—C2	1.5261 (14)	N5—H1N5	0.86
C2—C3	1.5273 (13)	N5—H2N5	0.86
C2—H2A	0.97	N6—C8	1.3191 (15)
C2—H2B	0.97	N6—H1N6	0.86
C3—C5	1.5334 (13)	N6—H2N6	0.86
C3—C4	1.5513 (13)	O1W—H1W1	0.78
C5—C6	1.5234 (14)	O1W—H2W1	0.90
C5—H5A	0.97		
O2 ⁱ —Cu1—O2	179.999 (1)	O5—C4—C3	119.72 (9)
O2 ⁱ —Cu1—O1	89.36 (4)	O2—C4—C3	116.95 (8)
O2—Cu1—O1	90.64 (4)	C6—C5—C3	113.23 (8)
O2 ⁱ —Cu1—O1 ⁱ	90.64 (4)	С6—С5—Н5А	108.9
O2—Cu1—O1 ⁱ	89.36 (4)	С3—С5—Н5А	108.9
O1—Cu1—O1 ⁱ	180.00 (3)	С6—С5—Н5В	108.9
O2 ⁱ —Cu1—O3 ⁱ	80.58 (3)	С3—С5—Н5В	108.9
O2—Cu1—O3 ⁱ	99.42 (3)	H5A—C5—H5B	107.7
O1—Cu1—O3 ⁱ	97.62 (3)	O7—C6—O6	123.57 (10)
O1 ⁱ —Cu1—O3 ⁱ	82.38 (3)	O7—C6—C5	119.46 (10)
O2 ⁱ —Cu1—O3	99.42 (3)	O6—C6—C5	116.94 (9)
O2—Cu1—O3	80.58 (3)	C7—N1—H1N1	120.0
O1—Cu1—O3	82.38 (3)	C7—N1—H2N1	120.0
O1 ⁱ —Cu1—O3	97.62 (3)	H1N1—N1—H2N1	120.0
O3 ⁱ —Cu1—O3	180.0	C7—N2—H1N2	120.0
C1—O1—Cu1	131.70 (7)	C7—N2—H2N2	120.0
C4—O2—Cu1	116.90 (6)	H1N2—N2—H2N2	120.0
C3—O3—Cu1	102.63 (5)	C7—N3—H1N3	120.0
C3—O3—H1O3	103.2	C7—N3—H2N3	120.0
Cu1—O3—H1O3	113.8	H1N3—N3—H2N3	120.0
O4—C1—O1	122.02 (10)	N3—C7—N2	119.75 (11)

O4—C1—C2	116.47 (9)	N3—C7—N1	119.69 (13)
O1—C1—C2	121.51 (9)	N2	120.54 (12)
C1—C2—C3	117.43 (7)	C8—N4—H1N4	120.0
C1—C2—H2A	107.9	C8—N4—H2N4	120.0
C3—C2—H2A	107.9	H1N4—N4—H2N4	120.0
C1—C2—H2B	107.9	C8—N5—H1N5	120.0
С3—С2—Н2В	107.9	C8—N5—H2N5	120.0
H2A—C2—H2B	107.2	H1N5—N5—H2N5	120.0
O3—C3—C2	107.59 (7)	C8—N6—H1N6	120.0
O3—C3—C5	109.31 (8)	C8—N6—H2N6	120.0
C2—C3—C5	110.83 (7)	H1N6—N6—H2N6	120.0
O3—C3—C4	110.36 (7)	N6-C8-N5	120.42 (10)
C2—C3—C4	109.34 (8)	N6-C8-N4	120.42 (11)
C5—C3—C4	109.39 (8)	N5—C8—N4	119.15 (11)
O5—C4—O2	123.33 (10)	H1W1—O1W—H2W1	101.6
O2 ⁱ —Cu1—O1—C1	118.93 (11)	Cu1—O3—C3—C4	-32.73 (8)
O2—Cu1—O1—C1	-61.07 (11)	C1—C2—C3—O3	-55.52 (11)
O3 ⁱ —Cu1—O1—C1	-160.66 (11)	C1—C2—C3—C5	-174.99 (9)
O3—Cu1—O1—C1	19.33 (11)	C1—C2—C3—C4	64.35 (11)
O1—Cu1—O2—C4	58.64 (8)	Cu1—O2—C4—O5	-169.11 (10)
O1 ⁱ —Cu1—O2—C4	-121.36 (8)	Cu1—O2—C4—C3	10.43 (12)
O3 ⁱ —Cu1—O2—C4	156.47 (8)	O3—C3—C4—O5	-161.50 (10)
O3—Cu1—O2—C4	-23.53 (8)	C2—C3—C4—O5	80.34 (12)
O2 ⁱ —Cu1—O3—C3	-149.08 (5)	C5—C3—C4—O5	-41.19 (13)
O2—Cu1—O3—C3	30.92 (5)	O3—C3—C4—O2	18.95 (12)
O1—Cu1—O3—C3	-61.01 (5)	C2—C3—C4—O2	-99.21 (10)
O1 ⁱ —Cu1—O3—C3	118.99 (5)	C5—C3—C4—O2	139.26 (9)
Cu1—O1—C1—O4	-173.35 (10)	O3—C3—C5—C6	52.33 (11)
Cu1—O1—C1—C2	6.55 (17)	C2—C3—C5—C6	170.76 (9)
O4—C1—C2—C3	-177.27 (11)	C4—C3—C5—C6	-68.62 (10)
O1—C1—C2—C3	2.83 (16)	C3—C5—C6—O7	147.04 (11)
Cu1—O3—C3—C2	86.49 (7)	C3—C5—C6—O6	-34.97 (14)
Cu1—O3—C3—C5	-153.08 (6)		
Symmetry codes: (i) $-x+1, -y+2, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3—H1O3…O6	0.95	1.61	2.5034 (13)	154
N1—H1N1···O5 ⁱⁱ	0.86	2.44	3.169 (2)	143
N1—H2N1···O2 ⁱⁱⁱ	0.86	2.47	3.0810 (19)	129
N1—H2N1···O1 ^{iv}	0.86	2.50	3.3243 (18)	161
N2—H1N2···O7 ^v	0.86	2.06	2.906 (2)	169
N2—H2N2···O4 ^{iv}	0.86	2.07	2.8811 (14)	157
N3—H1N3…O6 ^v	0.86	2.02	2.860 (2)	167
N3—H2N3····O5 ⁱⁱ	0.86	2.12	2.937 (2)	157

	0.96	2 10	2.016(2)	157			
N4—HIN4···OIW	0.80	2.10	2.910(2)	137			
N4—H2N4···O6 ^{vii}	0.86	2.56	3.0760 (18)	119			
N4—H2N4····O7 ⁱⁱ	0.86	2.26	2.9973 (17)	144			
N5—H1N5····O2 ⁱⁱⁱ	0.86	2.06	2.8484 (15)	152			
N5—H2N5···O7 ⁱⁱ	0.86	2.03	2.8273 (17)	153			
N6—H1N6····O3 ^{iv}	0.86	2.18	3.0140 (14)	164			
N6—H2N6…O4	0.86	1.99	2.8387 (18)	170			
O1W—H1W1···O4 ^{vi}	0.78	2.52	3.032 (2)	124			
O1W—H2W1···O1 ⁱⁱⁱ	0.90	2.03	2.932 (2)	175			
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z$; (iii) x , $y-1$, z ; (iv) $-x+1$, $-y+1$, $-z+1$; (v) $-x$, $-y+1$, $-z$; (vi) $-x+2$, $-y+1$, $-z+1$; (vii) $x+1$, y , z .							

Fig. 1

Fig. 2